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Canonical Formalism and Equations of Motion for a 
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A canonical formalism for spinning particles suitable for the formulation of a 
general relativistic covariant statistical mechanics of particles endowed with spin 
is developed. For that purpose the bracket for internal and external variables is 
given. In particular, limiting consideration to the spin tensor S ~,  it has been 
possible to define momenta that are the true conjugates to the position variables. 
For the case considered the Hamiltonian function in addition to the invariant 
"mass" involves only one additional scalar. The equations of motion are then 
found by calculating the brackets of the dynamical variables with that Hamil- 
tonian, and are compared to those obtained by other methods. The conjugate 
variables in the internal space that has to be adjoined to the (eight-dimensional) 
phase space for a complete covariant description of spinning particles are also 
given. 

1. I N T R O D U C T I O N  

There exists a cons iderable  li terature (Hehl  et al., 1976) concern ing  a 
covariant  descr ipt ion of sp inn ing  particles. The first descr ipt ion was given 
by Frenkel  (1926), while the classical work was carried out  by Weyssenhoff  
and  Raabe (1947). Fol lowing this was the work by Papape t rou  (1951) and  
others (e.g., Nyberg,  1962; Ellis, 1966, 1970, 1971; Dixon,  1964, 1970a,b). 
Their  approach  was based on  consider ing mult iple  moments ,  and,  in par- 
t icular,  those for a po l e -d ipo l e  particle. Later papers  (Bhaba and  Corben ,  
1941; Halbwachs ,  1960; Bailey and  Israel, 1975) considered a Lagrangian  
formal ism from which the equat ions  are derived via an act ion principle.  
More satisfactory, perhaps,  is a canonica l  formalism. 

tlnternational Centre for Theoretical Physics, Trieste, Italy. 
2On leave of absence from School of Physics, Tel Aviv University, Tel Aviv, Israel. 
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Introducing a generalized Hamiltonian function M and momenta p~ 

(la) 

( lb) 

defined by 

M 2 = g~t3p~po 

p,~ = M dx, J ds 

where the four canonical velocities dx~,/ds satisfy 

( dx . /  ds)( dx./ ds)g ~" = ( dx" / ds)( dx~/ ds)g.~ = 1 

the covariant canonical equations for spinless particles are given by Tauber 
and Weinberg (1961) and Ehlers (1961) 

dx"  / ds = ( o M / o p . ) x  (2a) 

and 

dp./  ds = - (  O M / Ox" )p (2b) 

as a result of  which the invariant "mass" M is a constant of the motion 

dM/ds = (OM/Ox~')p dx"/ds + (OM/Op.)x dp./ds = 0 (3) 

Alternately, if (3) holds, the equations of  motion (Pauli, 1958) written in 
terms of the momenta 

dp~/ ds = - (aM/ax '% + (p,./ M) dM/  ds (4) 

are equivalent to (2b), with (2a) being just a definition of p"/M. It is 
perhaps interesting to note (Tauber and Weinberg, 1961 ) that the set (x ~, Pc) 
transform like an eight-vector and, of course, that (2) and (3) can be written 
in terms of Poisson brackets as 

dx"/ds = (x ~, M); dp./ds = (p~, M);  dM/ds = (M, M) (5) 

Electromagnetic fields can be introduced by the simple device of  replacing 
p~, by Pc + eA. and at the same time performing a gauge transformation on 
the potential A~ ~ A .  + OG/Ox ~. 

The positions x ~ and momenta p .  then define an eight-dimensional 
(phase) space in which the differential volume d4p dax is an invariant. In 
that space one can define an invariant density-in-space N = N(x, p) so that 

(O/OX" )p( N dx" / ds) + (O/Op.)x( N dpu/ ds) = 0 (6) 

which, due to (2), reduces to 

dN/  ds = (ON/Ox " )p dx" / ds + (ON/Op~)x dp./ ds 

= Div(gdx/ds ,  gdp /ds )  = (N, M)  = 0 (7) 

which is the covariant form of Liouville's theorem. 
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Quantities of  physical interest, such as the current vector density, energy 
momentum density, and entropy density, are then obtained by integrating 
N multiplied by appropriate  factors p~ over momentum space. In general, 
if K = K ( N ,  M ) ,  it follows from (7) that the covariant derivative of  

Y[~,A... = J- K (  N, M )  d4p p~p,,p~ . . . (8) 

is identical to zero (Tauber and Weinberg, 1961; Israel, 1963), i.e., 

K ~...;~ - 0 

In the case of  spinning particles the situation is more complicated. In 
the first place brackets between momenta  do not vanish, but involve the 
spin tensor S ~ and the Riemannian curvature tensor. Also, since the mass 
M is no longer a constant of  the motion, the simple canonical equations 
(2) or their equivalents do not hold. One can get around the first difficulty 
by defining new momenta  * p~,  which differ from p ,  by terms involving S ~ 
(in analogy to adding a vector potential) and are the true conjugates to x ~'. 
The relevant bracket algebra is described in Section 2. Since we can limit 
ourselves to the simple group SL(c, 2) (for which the two scalars are 
constructed from S "~ and its dual constants), it is possible to define a 
general Hamiltonian function H, which, in addition to the "mass"  M 
(expressed in terms of  the new momenta) ,  involves only one additional 
scalar. The equations of  motions are then simply obtained by calculating 
the brackets of  the dynamical  variables with the Hamiltonian. This is done 
in Section 3, where our results are also compared with those obtained by 
other methods. 

Since we hope to apply our results to the formulation of a covariant 
statistical mechanics of  particles involving spin in a future paper,  we add 
two appendices, one in which we write down the equations for motion for 
two special cases suitable for further work, and one in which we obtain the 
variables for the internal phase space that have to be adjoined to those of  
the ordinary phase space. 

2. T H E  I N T E R N A L  B R A C K E T  A L G E B R A  3 

The particle is characterized by the space-time variables x '~, the 
momenta  p~,, and internal variables denoted generically by Q~"', which 
include at least the antisymmetric spin tensor S ~ generating a local 
homogeneous Lorentz g r o u p :  

Virtual translations in x '~ are generated according to 

(p~,, x ~) = 8~ (10) 

3This section is based on a Ph.D. thesis by Y. Feldman, Tel Aviv University (unpublished). 
4Our discussion here is quite general, but subsequently we limit ourselves to the spin tensor S~". 
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while the independence of internal and external coordinates is formulated 
a s  

(x ~, Q ~ ' ) = 0  (11) 

The internal spin symmetry is characterized by 

(S,~, Qx.. .)=g~XQ~.. ._g,XO~.. ._. . .  (12) 

which for the particular cases of a vector and the spin tensor reduces to 

( S ~ ,  0 h) = g~AQ~ _ g ~ Q ~  (12a) 

~ -  ~'~- ~ ~ + g ~ S ~  (12b) (S~, S~) =g~.Se g,~S g~S~, 

The requirement that virtual translation subjects every internal tensor 
to parallel displacement is expressed by the vanishing of the covariant 
bracket of momentum with any internal tensor 

( p . ,  Q ~ )  + I ' ~  Q ~  + . . . .  0 (13) 

which suggests that p~ are the gauge-invariant displacement generators, so 
that the bracket (p~,p~) can only vanish if space is flat or spin absent. 
Neglecting electromagnetic forces, it is given by 

(p. ,Pv)  = 1 r  (14) 2~J/3 ~t~-ap~v 

This, then, constitutes the underlying bracket algebra. However, inter- 
nal and external variables are here intertwined, while to serve as coordinates 
of a phase space they must be disentangled, unless they are canonically 
conjugate to each other. In particular, we require the bracket of p~ with 
p~, (14), or with Q~ to vanish, while maintaining (10) and (11). 

We can achieve this by making use of the isomorphism between the 
internal gauge group and the geometrical symmetry group of the tangent 
space and replace the gravitational potentials by tetrad fields 

b (15)  g.~, = rh~bh.h ~ 

where */~b = d i a g ( - 1 , - 1 , - 1 ,  1). The extra (six) fields are exactly what is 
needed to admit a six-parameter internal gauge group. The indices a, b are 
sensitive to internal Lorentz transformations alone and do not respond to 
coordinate transformations. Raising and lowering of indices is carried out 
in the usual manner by 

h .  ~abhb~ and h~ - g h~ (15a) 

Due to the Jacobi identities, it will be sufficient to reduce (13) in order 
to disentangle the momenta. It can be shown that writing 

1 a A~ p* = p~ - ~hA ;~,h~S (16) 
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makes p* the true canonical conjugate to x m, 

(p*~,x~)=8~; ( p * , Q ~ ) - - ( p i x , p ~ ) - O *  * - 

while the remaining brackets become 

(QA, xix) = 0  

(s.b, Qc) = ~Tb~Qa_ a~Qb 

where 
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(17) 

(17a) 

(17b) 

Qa=h~Qix and sab--hQhb.~ ..ix..~-- 

In the case described here the internal structure of  the particle is 
described by a spin tensor S Ix~ (or rather S ~ and four internal external 
vectors Q~ (A = I, II,  I I I ,  IV) satisfying (12). Associated with S ab and its 
dual 

* s a b  1 abcd  =3 e ~cd 

are two real scalars s and s* constructed from S 2= S~S b and *S 2 

S 2 - * S  2 : S 2 - -  S*2"~ *SS = ss* (18) 

related to the proper  values of  the matrix S. The vectors Q~ can be used 
to construct a spin-aligned tetrad, satisfying the completeness and orthogon- 
ality conditions 

Q I X  [-I~" A B  tx v 
A ~ B T ~  = gix~ and (19) gix~QAQB = 1 T A B  

It can then be shown that S "~ can be expressed in terms of the two scalars 
s and s* and the vectors Q~ 

IX ~, t ,  IX S ~ = s ( Q m Q w -  QmQ,v)  - s* (QfQ[ I -  Q[Q~) (20) 

The introduction of two additional antisymmetric tensors formed by cyclic 
permutat ion of I, II, and I I I  in (20) then closes the Lie algebra. However,  
for the special case that we wish to consider 

s = const, s* = const (21) 

the decomposit ion indicated by (20) is not possible and we arrive at the 
minimal structure consisting of spin alone, subject to (21). 

3. E Q U A T I O N S  OF M O T I O N  

For constant s and s*, (21), the only independent scalars that can be 
formed are 

M=(p*p*ix)  1/2, L= * * (P~Pt3 *S~ *SCbhah~b)l/2 (22) 
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so that the Hamiltonian is 
H = H ( M ,  L) (23) 

For any function f of  the dynamical variables we have 

d f / d r  = ( H , f )  = ( O H / O M ) ( M , f ) +  (OH/OL)(L , f )  (24) 

where r is a parameter monotonic in proper time, but not necessarily the 
proper time itself. Taking f in turn to be xix, p* ,  and *S ~ we obtain 

dxix/d'c = M - I ( o H / O M ) p * ~  + L-X(OH/OL) *S~, *SbCh~h'~p * (25a) 

Dp*/Oz=-  * ~ * dp J dr - F .~p ~ dx ~ / dr 

- -  A a ~, - - p , , ( d x  /dr)hxha;ix (25b) 

dSab / d r+  v~p *b - v b p *a = 0 (25C) 

IX a where we defined v a = (dx / d r ) h . .  In order that ~- be the proper time, we 
have to satisfy the equation 

(axix/dr)(ax"/az)g.~,  = 1 (26) 

Making use of  (15), we find 

v a ' ! , J b ~ a  b = 1 (26c) 

The energy E, which we would like to be a constant, is given by 

E -pix- * d x ~ / d r =  ( O H / O M ) M + ( O H / O L ) L  (27) 

Thus, if H is a homogeneous function of M and L, E will be a constant 
of the motion. 

So far we have assumed that all the x dependence enters only through 
the metric, and the electromagnetic interaction only through the momenta. 

a b  Ix v We could, of course, also add nonminimal couplings, such as gS Fix~h~ hb 
or SIX~S'~RIX~,~, etc. Since x ~ has vanishing brackets with the additiolaal 
term, its equation of motion (25a) will not change. The equation for p*,  
(25b), will acquire the additional terms 

a b  v ot a b  u o~ gS F~,ixh~hb+gS F~(h~hb),ix (25b') 

where the first term gives the interaction of the dipole with the gradient of 
the electromagnetic field and the second term is the contribution of curved 
space-time; g is the coupling constant. The equation of motion for the spin 
(25c) will acquire the additional terms 

gF~v[sab(hb~h,~_h~chb,.)+ be Ix a~, ~ i x .  S (h~h - h  h~)] (25c') 

giving the action of a local torque on the spin. 
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It might also be instructive to compare our results with those obtained 
by others. Introducing again p~, (instead of  p*), we obtain from (25b), 
(25b'), (14), and (16) 

D p . /  D T =  _ e F . ~ v  ~ 1 a f l  p v h  a b  v A - ~ S ~ R ~ v  + g S  F~A.~+gS F ~ ( h a h b ) . ~  (25b") 

We note that Bargmann et al. (1959) and Papapetrou (1951), who only 
considered minimal couplings, only have the first term on the right-hand 
side of (25b"). On the other hand, Corben (1968), Frenkel (1926), 
Weyssenhoff and Raabe (1947), and Halbwachs (1960) have equations 
identical to (25b") with momenta defined by 

�9 l /  A p p~ = mv~. + S ~ v  + g F ~ S ~ v  

Ellis (1970, 1971), using a different notation, arrives at the same results. 
The spin equation (25c), (25c') can be written in the form 

dSab/  d~" + v~v b - vbv ~ = 2g(  S ~ F  c~ - S ~ F  cb) (25c") 

where we disregarded terms arising from the curvature of space-time not 
considered by others. This equation is identical to those obtained by the 
authors cited above, who use the equivalent form 

S . ~ - v A ( S ~ A v ~ - S ~ x v . )  F ~ x m ~ - F ~ a m ~ +  ~ ~ = V F~ t3 (m~v~-m~v~ .  ) 

where m ~'~ = gS~'L 

Finally, we would like to comment on a striking similarity between 
this work and that of Ellis (1970, 1971) and Halbwachs (1960). They assume 
the electromagnetic dipole to be of the form 

p ~  = q~ v ~ - q~v ~ + 8 ~ t 3  m.vt3 (28) 

If one now defines 

q = ( _ q . q ~ . ) l / 2 ,  m = ( _ m ~ m ~ ) l / 2 ,  

q~" = qs r m ~ = ms ~ ( s . s  ~ = -1 )  

the above expression can be put in the form 

p"~ = q( s~ s ~ - s ;s  ~ ) - � 8 9  ( s~vt3 - st3v~ ) (28a) 

where clearly the second term is the adjoint of the first, and one has a 
decomposition similar to (20). 

A P P E N D I X  A. E Q U A T I O N S  O F  M O T I O N  FOR P A R T I C U L A R  
CHOICES OF THE TETRAD 

In deriving the equations of motion, the tetrad fields have been intro- 
duced as an arbitrary frame of reference, but in order to use these equations 
of motion, the frame has to be specified. 
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Since there are two timelike vectors dx~'/d~ " and * p~,  one has two 
"natural"  possibilities for the timelike h~. Taking h~ parallel to the momen- 
tum means h 2 = M - l p  *, which implies p * -  * ~a - p ~ h  =34 , so that the 
equations of  motion become 

dx4/ d~" = OH/OM + (L/  M)  OH/OL = E~ M (A1 a) 

dxa/dr  = (M/L)(OH/OL) *S~, *S t'̀ * (a ~ 4) (Alb)  

dp*4/d'c = dM/d~" = (dx;Vdr)h4~;.p *~" +p* Dh~/D~ (Alc) 

dp*/d'r = (dxA/ 4 tx * d.c)hx;~h~M +p~ Dh~/DT (a ~ 4 )  (Ald)  

dS"b/d~+(v"~2- vb~:)M = 0 (Ale) 

The second possibility is h2 = dx"/d~ and then v a =  8~, while the 
equations of  motions become 

dX4/dr = 1 (A2a) 

dx'~/dz = 0 (a ~ 4) (A2b) 

dp*/dr = 0 (A2c) 

dp*/dr = (dx~/dt);u(-p*h~ - p * ' h . ~ )  (a r 4) (A2d) 

dSab / d.c + ( 6~p* - 6b p *a) = 0 (A2e) 

In this case E = p * ,  making it automatically a constant. 

A P P E N D I X  B. G E N E R A L I Z E D  P H A S E  S P A C E  O F  A 
S P I N N I N G  PARTICLE 

The bracket algebra considered in Section 2 is not a linear representa- 
tion of a Lie algebra, but rather a function group. There exists then an 
underlying manifold that spans the algebra. I f  the number  of  dimensions 
of  that manifold equals the number  of  functionally independent generators, 
as is the case here, all the Casimir operators vanish identically. 

The functionally independent generators of  the algebra can be grouped 
into two sets yA and ZA, which satisfy the commutat ion relations 5 

(ya, y . )  = 0, (ZA, ZB) = 0, (ya, Z.) = 6 a (B1) 

Clearly, it is those variables that will become the canonical variables of  the 
internal phase space. By a method similar to the one used by Kramers 
(1935) and Schiller (1962), who considered the generators of  O(3), 

A1 = S 23, A2 = S 31, A3 = S 12 with Y, A 2 = const (B2) 

5In our case A, B = 1, 2. 
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for which the two independent  canonical variables are 

z = A3 and y = t a n - t ( A l / A 2 )  (B3) 

we can decompose the SL(2, c) algebra into a direct product 0(3)  x 0(3)  
by defining 

Cj = Aj  + iBm, Dj = Aj  - iBj ( j  = 1, 2, 3) (B4) 

where 

At = S23~, A2 = S 31, A3 = S 12 

Bt = S 14, B2 = S 24, B3 = 834  

for which the brackets are given by 

(Ci,  C j )=e i j kCk ,  (Di,  D j ) = @ k D k ,  (G ,  Dj) = 0  (B5) 

with 

Y C~ = (s + is*) 2 = c 2 and • D r  = (s - is*) 2 = d 2 

Since the brackets of  s and s* with all other variables vanish, they are 
constants of  the motion, as we postulated previously. In analogy with (B3), 
we find that the canonical variables can be written as 

z~ = C3, y~ = t a n - l ( C t / C 2 )  

z2 = D3,  y2 = t a n - l ( D 1 / D 2 )  

and obey conditions 

In terms of y a  and za 

y l ,  = y2, Zl* = 22 

where 

S 12 = I ( Z  1 --~ Z2) 

S 34 : I ( Z  1 --  Z2) 

S 31 = �89 cos yl + y cos y2) 

S 23 = I ( X  sin yl + y sin y2) 

S 14 = ( 2 i ) - 1 ( X  sin y~ - Y sin y2) 

8 24 = ( 2 i ) - l ( x  cos yl _ y cos  y2) 

(B6) 

(B6a) 

The volume 
adjoined to the one in ordinary phase space d4x d4p *, is given by 

d a y  = c d d z l  dz2 dy 1 dy 2 

(B7) 

X = ( c 2 -  z2) 1/2, y =  ( d 2 -  z~) 1/2 

element in the internal phase space, which has to be 

(B8) 
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